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698  Chapter 12 Object Recognition

Recognition Based on Decision-Theoretic Methods

Decision-theoretic approaches to recognition are based on the use of decision
(or discriminant) functions.Letx = (x,, x,,... ,x,,)T represent an n-dimensional
pattern vector, as discussed in Section 12.1. For W pattern classes @, , w,. .. Wy,
the basic problem in decision-theoretic pattern recognition is to find W decision
functions dy(x), d,(x),..., dy(x) with the property that, if a pattern x belongs
to class w;, then

dix) >d(x) j=1,2,...,W;j#i (12.2-1)

In other words, an unknown pattern x is said to belong to the ith pattern class
if, upon substitution of x into all decision functions, d,(x) yields the largest
numerical value. Ties are resolved arbitrarily.

The decision boundary separating class w, from , is given by values of x for
which di(x) = d(x) or, equivalently, by values of x for which

di(x) ~ d{(x) = 0. (12.2-2)

Common practice is to identify the decision boundary between two classes by
the single function d(x) = d(x) — d;(x) = 0.Thus d,,(x) > 0 for patterns of
class w; and d;;(x) < 0 for patterns of class w,. The principal objective of the
discussion in this section is to develop various approaches for finding decision
functions that satisfy Eq. (12.2-1).

2% 1 Matching

Recognition techniques based on matching represent each class by a proto-
type pattern vector. An unknown pattern is assigned to the class to which it
is closest in terms of a predefined metric. The simplest approach is the mini-
mum-distance classifier, which, as its name implies, computes the (Euclidean)
distance between the unknown and each of the prototype vectors. It chooses
the smallest distance to make a decision. We also discuss an approach based
on correlation, which can be formulated directly in terms of images and is
quite intuitive.

Minimum distance classifier

Suppose that we define the prototype of each pattern class to be the mean vee-
tor of the patterns of that class:

m,=%2x; i=12....W (12.2-3)

} AEw,
where N, is the number of pattern vectors from class o, and the summation i
taken over these vectors. As before, W is the number of pattern classcs. Onv
way to determine the class membership of an unknown pattern vector x is 0
assign it to the class of its closest prototype, as noted previously. Using I.h"‘
Euclidean distance to determine closeness reduces the problem to compullng
the distance measures:

D(x)=Ix-m)| j=12..W (12.2-4)
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where [all = (a”a)""" is the Euclidean norm. We then assign x to class w, il 2,(x)
is the smallest distance, That is. the smallest distance implies the best match
this formulation. It is not difficult to show (Problem 12.2) that sclecting the
smallest distance is equivalent to evaluating the functions

! j=1,2,....W (12.2-5)

. I
_ LA
d(x) = x'm, — —m;m,
and assigning x to class w, if d,(x) yields the largest numerical value. This formu-
Jation agrees with the concept of a decision function, as defined in Eq. (12.2-1).
From Egs. (12.2-2) and (12.2-5). the decision boundary between classes o,
and w, for a minimum distance classifier is

d (x) = d(x) = d(x)
1 .

o ] !

= x(m, - om) - S (mo-m ) (m - my) =000 (12.2:6)
The surface given by Eq. (12.2-6) is the perpendicular bisector of the hne seg-
ment joining m, and m, (sec Problem 12.3). For i = 2, the perpendicular bi-
sector is a tine, for n = 3 it1s a plane, and for n > 3itis called a hyperplane,

Figure 12.6 shows two pattern classes extracted from the iris samples in
Fig. 12.1. The two classcs, Iris versicolor and Iris sciosa, denoted w, and w,, re-

spectively, have sample mean vectors m; = (4.3, 1.3) and m, = (1.5, 0.3)".
From Eq. (12.2-5), the decision functions are
T by
di{x) = x'm; — S mim,
= 43x, + 1.3x, — 10.]
¥z
0 fris versicolor
o iy setosa
200 /—28r| + § 0 - B9 =10
[N
e omooa
53 150 ] E:l:}gj
- oo Brm
= funn. 2w
S oo n
ERE B8Ho m
]
29
05+
ol | L L i I [ [ 1\
0 ] 2 3 4 3 6 7

Petal tength (cm)

Recognition Based on Decision-Theoretic Methods

699

EXAMPLE I2.1:
Hustration of the
minimum-

distance classsfier.

FIGURE 12.6
Decision
boundary of
minimum distance
classiier for the
classes of {ris
versicolor and Iris
setosa. The dark
dot and square
are the means.
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and

dy(x) = x"'m, — Emimz
= 1.5x, + 0.3x, — L.17.
From Eq. (12.2-6), the equation of the boundary is

dy2(x) = d,(x) — dy(x)
= 28x, + 1.0x, ~ 89 = 0.

Figure 12.6 shows a plot of this boundary (note that the axes are not to the same
scale). Substitution of any pattern vector from class w, would yield d,,{x) > (.
Conversely, any pattern from class w, would yield d,5(x) < 0. In other words,
given an unknown pattern belonging to one of these two classes, the sign of
dy,(x) would be sufficient to determine the pattern’s class membership.

In practice, the minimum distance classifier works well when the distance
between means is large compared to the spread or randomness of each class
with respect to its mean. In Section 12.2.2 we show that the mininmum distance
classifier yields optimum performance (in terms of minimizing the average loss
of misclassification) when the distribution of each class about its mean is in the
form of a spherical “hypercloud” in n-dimensional pattern space.

‘The simultaneous occurrence of large mean separations and relatively small
class spread occur seldomly in practice unless the system designer controls the
nature of the input. An excelient example is provided by systems designed to
read stylized character fonts, such as the familiar American Banker’s Associa-
tion E-13B font character set. As Fig. 12.7 shows, this particular font set consists
of 14 characters that were purposely designed on a9 X 7 grid in order to facil-
uate their reading. The characters usually are printed in ink that contains fine-
ly ground magnetic material. Prior to being read, the ink is subjected 1o a
magnetic field, which accentuates each character to simplify detection. In other
words, the segmentation problem is solved by artificially highlighting the key
characteristics of each character.

The characters typically are scanned in a horizontal direction with a single-
slit reading head that is narrower but taller than the characters. As the head
moves across a character, it produces a 1-D electrical signal (a signature) that
is conditioned to be proportional to the rate of increase or decrease of the char-
acter area under the head. For example, consider the waveform associated with
the number 0 in Fig. 12.7. As the reading head moves from left to right, the arca
seen by the head begins to increase, producing a positive derivative (a positive
rate of change). As the head begins to leave the left leg of the O, the arca under
the head begins to decrease, producing a negative derivative. When the head is
in the middle zone of the character, the area remains nearly constant, produc-
ing a zero derivative. This pattern repeats itself as the head enters the right leg
of the character. The design of the font ensures that the waveform of each char-
acter is distinct from that of all others. It also ensures that the peaks and zcros
of each waveform occur approximately on the vertical lines of the background
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grid on which these waveforms are displayed. as shown in Fig, 12.7. The E-138
font has the property that sampling the waveforms only at these points vields
enough information for their proper classification. The use of magnetized ink
aids in providing clean waveforms, thus minimizing scattér.

Designing a minimum distance classifier for this application is straightfor-

ward. We simply store the sample values of each waveform and let cach set of
samples be represented as a prototype vector my, j = 12,5, i4. When an un-
known character is to be classified. the approach is to scan it in the manner just
described. express the grid samples of the waveform as a vector. x. and identi-
fy its class by selecting the class of the prototype vector that yields the highest
value m Eq. (12.2-5). High classification speeds can be achieved with analog
circuits composed of resistor banks (see Problem 12.4).

Matching by correlation

We introduced the basic concept of image correlation in Section 4.6.4. Here.
we consider it as the basis for finding matches of a subimage w(x, y) of size
J ¥ K within animage f(x. v) of size M x N.where we assume that / = M

(see Problem 12.5). working directly with an image or subimage format is more
intuitive (and traditional),

FIGURE 12.7
American
Bankers
Association
E-131 font
character set and
corresponding
wavelorms.
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[n its simplest form, the correlation between f(x, y) and w(x. y) is
(. y) = DD fls.)w(x + sy + 1) (12.2-7)
\ !

forx=0.1.2,....M - 1.v=0,1,2..... N — 1, and the summation is taken
over the image region where w0 and foverlap. Note by comparing this equation
with Eq. (4.6-30) that it is implicitly assumed that the functions are real quan-
tities and that we left out the MN constant. The reason is that we are going to
use a normalized function in which these constants cancel out. and the defini-
tion given in Eq. (12.2-7) is used commonly in practice. We afso used the sym-
bols s and t in Eq. (12.2-7) to avoid confusion with m and n. which are used for
other purposes in this chapter.

Figure 128 illustrates the procedure. where we assume that the origin of f'is
at its top left and the origin of w is at its center. For one value of (x, v), say,
(xo. vo) inside f, application of Eq. (12.2-7) yields one value of ¢. As x and yare
varied, w moves around the image area, giving the function ¢(x, y). The maxi-
mum value(s) of ¢ indicates the position(s) where w0 best matches f. Note that
accuracy is lost for values of v and y near the edges of f, with the amount of
error being in the correlation proportional to the size of w. This is the familiar
border problem that we encountered numerous times in Chapter 3.

The correlation function given in Eq. (12.2-7) has the disadvantage of being
sensitive to changes in the amplitude of fand w. For example, doubling ali val-
ues of fdoubles the value of ¢(x, y). An approach frequently used to over-
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FGURE 12.8 Arrangentent for obtaining the correlation of £ and - at point (.l’u. }'n)'
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come this difficulty is to perform matching via the correlation coefficient, which
is defined as

2 Z%f(s,l) - f(l\‘,f)][w(x + 5,y + 1) - ’fb]

y(x, ¥} =

ba

{ Z 2“(3 1) — _f(s,f)FZ Ziu:(x + s, y+1)— ﬁ)]z}
st ' {12.2-8)

where x = 0,1,2,.... M — 1L,y =0.1,2,.... N — 1, is the average value of
the pixels in w (computed only once). f is the average value of fin the region
coincident with the current location of 1w, and the summations are taken over
the coordinates common to both fand w. The correlation coefficient y(x, y) is
scaled in the range —1 to 1. independent of scale changes in the amplitude of f
and 1w (see Problem 12.5).

# Figure 12.9 illustrates the concepts just discussed. Figure 12.9(a) is f(x, y) and
Fig. 12.9(b) is w(x, y}. The correlation coefficient y(x, y) is shown as an image
in Fig. 12.9(c). The higher (brighter) value of y(x, y) is in the position where the
best match between fand w was found.

Although the correlation function can be normalized for amplitude changes
via the correlation coefficient. obtaining normalization for changes in size and
rotation can be difficult. Normalizing for size involves spatial scaling, a process
that in itself adds a significant amount of computation. Normalizing for rotation
is even more difficult. If a clue regarding rotation can be extracted from f(x, y),
then we simply rotate w(x. ¥) so that it aligns itself with the degree of rotation
in f(x. y). However, if the nature of rotation is unknown, looking for the best
match requires exhaustive rotations of w(x. v). This procedure is impractical
and, as a consequence. correlation seldom is used in cases when arbitrary or
unconstrained rotation is present.

EXAMPLE 12.2:
Object matching
via the correlation
coelficient,

abe

FIGURE 12.9

(a) Image.

(b) Subimage.

{c) Correlation
coefficient of (a)
and (b). Note that
the highest
(brighter)} point in
{c) occurs when
subimage (b) is
coincident with the
letter “D"” in (a).
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In Section 4.6.4 we mentioned that correlation also can be carried out in the
frequency domain via the FFT. If f and w are the same size, this approach can
be more efficient than direct implementation of correlation in the spatial do-
main. Equation (12.2-7) is used when w is much smaller than f- A trade-off
estimate performed by Campbell [1969] indicates that, if the number of nonze-
ro terms in w is less than 132 (a subimage of approximately 13 X 13 pixels), di-
rect implementation of Eq. (12.2-7) is more efficient than the FFT approach. This
number, of course, depends on the machine and algorithms used, but it does in-
dicate approximate subimage size at which the frequency domain should be
considered as an alternative. The correlation coefficient is more difficult to im-
plement in the frequency domain. It generally is computed directly in the spatial
domain.

12.4.7 Optimum Statistical Classifiers

In this section we develop a probabilistic approach to recognition. As is true in
most fields that deal with measuring and interpreting physical events, proba-
bility considerations become important in pattern recognition because of the
randomness under which pattern classes normally are generated. As shown in
the following discussion, it is possible to derive a classification approach that is
optimal in the sense that, on average, its use yields the lowest probability of
committing classification errors (see Problem 12.10).

Foundation

The probability that a particular pattern x comes from class w; is denoted
Pl /x). If the pattern classifier decides that x came from w; when it actually
came from w,, it incurs a loss, denoted L;;. As pattern x may belong to any one
of W classes under consideration, the average loss incurred in assigning x to
class w; is

W
rix) = ;ijp(wk/x). (12.2-9)

This equation often is called the conditional average risk or loss in decision-
theory terminology.

From basic probability theory, we know that p( A /B) = [ p(A)p( B/A))/p(B).
Using this expression, we write Eq. (12.2-9) in the form

W
ri(x) = ﬁ ’E Ly p(x/w)P(w;) (12.2-10)

where p(x/w,) is the probability density function of the patterns from class W
and P(w,) is the probability of occurrence of class ;. Because 1/p(x) is posi-
tive and common to all the ri(x), j = 1, 2,..., W, it can be dropped from
Eq. (12.2-10) without affecting the relative order of these functions from the
smallest to the largest value. The expression for the average loss then reduces to

w
r(x) = kzl Ly;p(x/w, ) P(a,). (12.2-11)
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The classifier has W possible classes to choose from for any given unknown
pattern. If it computes r,(X), ro(x}...., rwp(x) for each pattern x and assigns the
pattern to the class with the smallest loss, the total average loss with respect to
all decisions will be minimum. The classifier that minimizes the total average loss
is called the Bayes classifier. Thus the Bayes classifier assigns an unknown pat-
tern x to class w, if r,(x) << r(x) forj = 1.2,..., W;j # i. In other words, x is
assigned to class w, if

w W
’(21 L p(x/w)Pw) < 3 L, p(x/w,)P(w,) (12.2-12)
= g=1

for all j;j # i. The “loss” for a correct decision generally is assigned a value of
zero, and the loss for any incorrect decision usually is assigned the same nonze-
ro value (say, 1). Under these conditions, the loss function becomes

L,=1-§; (12.2-13)
where §;; = 1ifi = jand §,; = 0if i # j. Equation (12.2-13) indicates a loss of

unity for incorrect decisions and a loss of zero for correct decisions. Substitut-
ing Eq. (12.2-13) into Eq. (12.2-11) yields

W
r(x) = ;_:}(1 - ‘Sk;)p(x/wk)P(wk)
= p(x) — p(x/w)Pw,). (12.2-14)
The Bayes classifier then assigns a pattern x to class w, if, for all j # |,
p(x) = p(x/w)P(w;) < p(x) — p(x/w)P(w) (12.2-15)

or, equivalently, if
p{x/w)P(w;) > px/w)P(w;)  j=1,2,...,W;j#i (12.2-16)

With reference to the discussion leading to Eq. (12.2-1), we see that the Bayes
classifier for a 0-1 loss function is nothing more than computation of decision
functions of the form

d(x) = p(x/w)P(e;)} j=12,....W (12.2-17)

where a pattern vector x is assigned to the class whose decision function yields
the largest numerical value.

The decision functions given in Eq. (12.2-7) are optimal in the sense that
they minimize the average loss in misclassification. For this optimality to hold,
however, the probability density functions of the patterns in each class, as well
as the probability of occurrence of each class, must be known. The latter re-
quirement usually is not a problem. For instance, if all classes are equally like-
Iy to occur, then P(w;) = 1/M. Even if this condition is not true, these
probabilities generally can be inferred from knowledge of the problem. Esti-
mation of the probability density functions p(x/w,) is another matter. If the
pattern vectors, x, are n dimensional, then p(x/w,) is a function of n variables,
which, if its form is not known, requires methods from multivariate probabili-
ty theory for its estimation. These methods are difficult to apply in practice,

705
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FIGURE 12.10
Probability
density functions
for two I-D
pattern classes.
The point x,
shown is the
decision boundary
if the two classes
are equally likely
to occur.

Object Recognition

especially if the number of representative patterns from each class is not large
or if the underlying form of the probability density functions is not well be-
haved. For these reasons, use of the Bayes classifier generally is based on the as-
sumption of an analytic expression for the various density functions and then
an estimation of the necessary parameters from sample patterns from each class.
By far the most prevalent form assumed for p(x/w,) is the Gaussian probabil-
ity density function. The closer this assumption is to reality, the closer the Bayes
classifier approaches the minimum average loss in classification.

Bayes classifier for Gaussian pattern classes

To begin, let us consider a 1-D problem (n = 1) involving two pattern classes
(W = 2) governed by Gaussian densities, with means m, and m, and standard
deviations o and o, respectively. From Eq. (12.2-17) the Bayes decision func-
tions have the form

d,(x) = p(x/w,)P(w;)

) ey (12.2-18)
pLi .

= " Plw; =1,2

- /271_0] € (w}) j

where the patterns are now scalars, denoted by x. Figure 12.10 shows a plot of
the probability density functions for the two classes. The boundary between the
two classes is a single point, denoted x, such that d,(x,) = d(x,). If the two
classes are equally likely to occur, then P{w,) = P(w,) = 1/2. and the deci-
sion boundary is the value of x, for which p(xo/w;) = p(x,/w,). This point is the
intersection of the two probability density functions, as shown in Fig. 12.10. Any
pattern (point) to the right of x; is classified as belonging to class w,. Similarly.
any pattern to the left of x, is classified as belonging to class w,. When the class-
es are not equally likely to occur, x, moves to the left if class w, is more likely
to occur or, conversely, to the right if class w; is more likely to occur. This resuit
is to be expected, because the classifier is trying to minimize the loss of mis-
classification. For instance, in the extreme case, if class w, never occurs. the clas-
sifier would never make a mistake by always assigning all patterns to class w;
(that is, x, would move to negative infinity).

Probability density
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In the n-dimensional case, the Gaussian density of the vectors in the jth pat-
tern class has the form
1 -l {»--m )!(‘ a-m)
plx/w) = —— e p 2 ‘
( f) (277')”/2|C; 1/2
where each density is specified completely by its mean vector m , and covariance
matrix C,, which are defined as

(12.2-19)

m, = E{x} (12.2-20)
and
C,= E{(x —m)x-m)} (12.2-21)

where £/ {-} denotes the expected value of the argument over the patterns of
class w,. In Eq. (12.2-19), n is the dimensionality of the pattern vectors, and |C||
is the determinant of the matrix C,. Approximating the expected value E by the
average value of the quantities in question yields an estimate of the mean vec-
tor and covariance matrix:

1
m, = — Ex (12.2-22)
N, i,
and
1
Ci=v xx’ — mm’ (12.2-23)
] xew

where N, is the number of pattern vectors from class w,, and the summation is
taken over these vectors, Later in this section we give an example of how to use
these two expressions.

The covariance matrix is symmetric and positive semidefinite. As explained in
Section 11.4, the diagonal element ¢, ;. is the variance of the kth element of the pat-
tern vectors. The off-diagonal element ¢, is the covariance of x; and x; . The mul-
tivariate Gaussian density function reduces to the product of the univariate Gaussian
density of each element of x when the off-diagonal elements of the covariance ma-
trix are zero. This happens when the vector elements x, and x; are uncorrelated.

According to Eq. (12.2-17), the Bayes decision function for class w, 1S
di(x) = p(x/w,)P(w,). However, because of the exponential form of the Gauss-
ian density, working with the natural logarithm of this decision function is more
convenient, In other words, we can use the form

d,(x) = In[p(x/w;)P{w))

= In plx/w)) + In P(a). (12.2-29)

This expression is equivalent to Eq. (12.2-17) in terms of classification perfor-
mance because the logarithm is a monotonically increasing function. In other
words, the numerical order of the decision functions in Eqgs. (12.2-17) and
(12.2-24) is the same. Substituting Eq. (12.2-19) into Eq. (12.2-24) yields

- 22w - l1nicjj ] [{(x = m,)"C;'(x ~ m,)]. (12.2-25)

d 2 2 2

1

(x) = InPa))
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A Bayes classifier
for three-
dimensional
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The term (n/2) In2# is the same for all classes, so it can be eliminated from
Eq. (12.2-25), which then becomes
1 1
d(x) = mPw) = In[C) - > [(x - m) CY(x ~ m,)] (12.2:26)
forj = 1,2,..., W.Equation (12.2-26) represents the Bayes decision functions
for Gaussian pattern classes under the condition of a 0-1 loss function.

The decision functions in Eq. (12.2-26) are hyperquadrics (quadratic functions
in n-dimensional space), because no terms higher than the second degree in the
components of x appear in the equation. Clearly, then, the best that a Bayes
classifier for Gaussian patterns can do is to place a general second-order deci-
sion surface between each pair of pattern classes. If the pattern populations are
truly Gaussian, however, no other surface would yield a lesser average loss in
classification.

If all covariance matrices are equal,then C, = C,forj = 1,2,...,W.By ex-
panding Eq. (12.2-26) and dropping all terms independent of j, we obtain

d(x) = InP(w,) + x'C'm, — %m}rC"lmj, (12.2-27)

which are linear decision functions (hyperplanes) forj = 1,2,..., W.
If, in addition, C = I, where I is the identity matrix, and also P(w,) = 1/W,
forj =1,2,...,W,then

di(x) = x'm, - %m}rm,- j=12,...,W. (12.2-28)
These are the decision functions for a minimum distance classifier, as given in
Eq. (12.2-5). Thus the minimum distance classifier is optimum in the Bayes sensc¢
if (1) the pattern classes are Gaussian, (2) all covariance matrices are equal to
the identity matrix, and (3) all classes are equally likely to occur. Gaussian pat-
tern classes satisfying these conditions are spherical clouds of identical shape in
n dimensions (called hyperspheres). The minimum distance classifier establish-
es a hyperplane between every pair of classes, with the property that the hy-
perplane is the perpendicular bisector of the line segment joining the center of
the pair of hyperspheres. In two dimensions, the classes constitute circular re-
gions, and the boundaries become lines that bisect the line segment joining the
center of every pair of such circles.

# Figure 12.11 shows a simple arrangement of two pattern classes in three di-

mensions. We use these patterns to illustrate the mechanics of implementing

the Bayes classifier, assuming that the patterns of each class are samples from
a Gaussian distribution.

Applying Eq. (12.2-22) to the patterns of Fig. 12.11 yields

3 1 1

m =—|1 and m; = 7 3

1 3
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X FIGURE 12.11
Two simple
pattern classes
and their Bayes
decision boundary
(0.0,1) (shown shaded).

T(a, 1. 1)

(1.0.1)

(1.0,0)

@ € W

X (o3 Wy

Similarly, applying Eq. (12.2-23) to the two pattern classes in turn yields two
covariance matrices, which in this case are equal:

1 3 1 1
C|:C3=R 1 3 _1
1 -1 3

Because the covariance matrices are equal the Bayes decision functions are
given by Eq. (12.2-27). If we assume that P{w,) = P(w,) = 1/2,then Eq. (12.2-
28) applies, giving

1
d(x) =x'C'm, - Em}-TC’lmJ
in which
8 -4 -4
C'=|-4 8 4
-4 4 8

Carrying out the vector-matrix expansion for d,(x) provides the decision functions:
di(x) =4x;, — 1.5 and d,(x) = —4x; + 8x, + 8x; ~ 5.5,
The decision surface separating the two classes then is
dy(x) ~ dy(x) == 8x; — 8x, — 8x; + 4 = 0.
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EXAMPLE 12.4:
Classification of
multispectral data
using the Bayes
classifier.

FIGURE 12.12
Formation of a
pattern vector
from registered
pixels of four
digital images
generated by a
multispectral
scanner.
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Figure 12.11 shows a section of this surface, where we note that the classes were
separated effectively.

One of the most successful applications of the Bayes classifier approach is in
the classification of remotely sensed imagery generated by multispectral scan-
ners aboard aircraft, satellites, or space stations. The voluminous image data
generated by these platforms make automatic image classification and analysis
a task of considerable interest in remote sensing. The applications of remote
sensing are varied and include land use, crop inventory, crop disease detection.
forestry, air and water quality monitoring, geological studies, weather prediction,
and a score of other applications having environmental significance. The fol-
lowing example shows a typical application.

=» As discussed in Sections 1.3.4 and 11.4, a multispectral scanner responds to
electromagnetic energy in selected wavelength bands; for example, 0.40-0.44.
0.58-0.62,0.66-0.72, and 0.80-1.00 microns. These ranges are in the violet, green.
red, and infrared bands, respectively. A region on the ground scanned in this
manner produces four digital images, one image for each band. If the images are
registered, a condition which is generally true in practice, they can be visualized
as being stacked one behind the other, as Fig. 12.12 shows. Thus, just as we did
in Section 11.4, every point on the ground can be represented by a 4-element
pattern vector of the form x = (xl » X2, X3, x4)7, where x, is a shade of violet, x»
is a shade of green, and so on. If the images are of size 512 X 512 pixels, each
stack of four multispectral images can be represented by 262,144 4-dimension-
al pattern vectors.

As noted previously, the Bayes classifier for Gaussian patterns requires
estimation of the mean vector and covariance matrix for each class. In remote
sensing applications these estimates are obtained by collecting multispectral
data for each region of interest and then using these samples, as described in the
preceding example. Figure 12.13(a) shows a typical image sensed remotely from
an aircraft (this is a monochrome version of a multispectral original). In this

creee
*re e
LR 2
ep ot
*se e
[ E XN N
EE
LA LR N
ess”
sase
X, / LX)
X3 Spectral band 4
X =
.r3
Xy Spectral band 3
Spectral band 2
Spectral band |




) (‘AysIaalufy onping ‘Buisuag sjoway jo suonedtddy o) L1ojvic
~QE] 2431 JO 4891000 ) IeyIsseld soAeg e SUisn $1NSA1 UOTIRJISSRO SUIYDBW JO InojuLld (q) -odewi [papadsuinn (B) £1°Z1 34n9H

g e

1
Twstustofdsin ]
A

prebuient-ir gt

Wil ot bl ol
WA

a4kl
LAdwviAdudeif
C L L LY
JI1naAndad
w WA A bt
]

X

ML ST T

Innin

T ot 98 00 ok
. aLTW
1 [ wtof st vt o i
Witn kA
Twdddarnd
tlu(ﬂllt

ol ol i i o
“lllmgllllll

P ol W P

WA d A Ao

ot 6 ot o o o

1 bt ot A A

o 36 e oo

m.-.t..al::ttn;aaxz;
'

£
§
¥
H
L)

1
]
1
i
i
i
i
!
H

U M-y

711



712

Chopter 12 +: Object Recognition

particular case, the problem was to classify areas such as vegetation, water, and
bare soil. Figure 12.13(b) shows the results of machine classification, using a
Gaussian Bayes classifier, The arrows indicate some features of interest. Arrow
1 points to a corner of a field of green vegetation, and arrow 2 points to a river.
Arrow 3 identifies a small hedgerow between two areas of bare soil. Arrow 4
indicates a tributary correctly identified by the system. Arrow 5 points to a small
pond that is almost indistinguishable in Fig. 12.13(a). Comparing the original
image with the computer output reveals recognition results that are very close
to those that a human would generate by visual analysis.

Before leaving this section, it is of interest to note that pixel-by-pixel classi-
fication of an image as described in the previous example actually segments the
image into various classes. This approach is like segmentation by thresholding
with several variables, as discussed briefly in Section 10.3.7.

12.2.3 Neural Networks

The approaches discussed in the preceding two sections are based on the use of
sample patterns to estimate statistical parameters of each pattern class. The
minimum distance classifier is specified completely by the mean vector of each
class. Similarly, the Bayes classifier for Gaussian populations is specified com-
pletely by the mean vector and covariance matrix of each class, The patterns
(of known class membership) used to estimate these parameters usually are
called training patterns, and a set of such patterns from each class is called a
rraining set. The process by which a training set is used to obtain decision func-
tions is called learning or training.

In the two approaches just discussed, training is a simple matter. The train-
ing patterns of each class are used to compute the parameters of the decision
function corresponding to that class. After the parameters in question have
been estimated, the structure of the classifier is fixed, and its eventual perfor-
mance will depend on how well the actual pattern populations satisfy the un-
derlying statistical assumptions made in the derivation of the classification
method being used.

The statistical properties of the pattern classes in a problem often are uf-
known or cannot be estimated (recall our brief discussion in the preceding s¢¢-
tion regarding the difficulty of working with multivariate statistics). In practice.
such decision-theoretic problems are best handled by methods that yield the
required decision functions directly via training. Then, making assun‘tptior}S re-
garding the underlying probability density functions or other probabilistic 1"
formation about the pattern classes under consideration is unnecessary. In this
section we discuss various approaches that meet this criterion.

Background

The essence of the material that follows is the use of a multitude of elemcﬂ‘{“
nonlinear computing elements (called netrons) organized as networks remt
niscent of the way in which neurons are believed to be interconnected in the
brain. The resulting models are referred to by various names. including e
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networks, newrocomputers, parallel distributed processing (PDP) models, neu-
romorphic systems, layered self-adaptive networks, and connectionist models.
Here, we use the name neural networks, or neural nets for short. We use these
networks as vehicles for adaptively developing the coefficients of decision func-
tions via successive presentations of training sets of patterns.

Interest in neural networks dates back to the early 1940s, as exemplified by
the work of McCulloch and Pitts [1943]. They proposed neuron models in the
form of binary threshold devices and stochastic algorithms involving sudden
0-1 and 1-0 changes of states in neurons as the bases for modeling neural sys-
tems. Subsequent work by Hebb [1949] was based on mathematical models that
attempted to capture the concept of learning by reinforcement or association.

During the mid-1950s and early 1960s, a class of so-called learning machines
originated by Rosenblatt [1959, 1962] caused significant excitement among re-
searchers and practitioners of pattern recognition theory. The reason for the
great interest in these machines, called perceptrons, was the development of
mathematical proofs showing that perceptrons, when trained with linearly sep-
arable training sets (i.e., training sets separable by a hyperplane), would con-
verge to a solution in a finite number of iterative steps. The solution took the
form of coefficients of hyperplanes capable of correctly separating the classes
represented by patterns of the training set.

Unfortunately, the expectations following discovery of what appeared to be
a well-founded theoretic model of learning soon met with disappointment. The
basic perceptron and some of its generalizations at the time were simply inad-
equate for most pattern recognition tasks of practical significance. Subsequent
attempts to extend the power of perceptron-like machines by considering mul-
tiple layers of these devices, although conceptually appealing, lacked effective
training algorithms such as those that had created interest in the perceptron it-
self. The state of the field of learning machines in the mid-1960s was summarized
by Nilsson [1965]. A few years later, Minsky and Papert [1969] presented a dis-
couraging analysis of the limitation of perceptron-like machines. This view was
held as late as the mid-1980s, as evidenced by comments by Simon [1986]. In this
work, originally published in French in 1984, Simon dismisses the perceptron
under the heading “Birth and Death of a Myth.”

More recent results by Rumelhart, Hinton, and Williams [1986] dealing with
the development of new training algorithms for multilayer perceptrons have
changed matters considerably. Their basic method, often called the generalized
delta rule for learning by backpropagation, provides an effective training method
for multilayer machines. Although this training algorithm cannot be shown to
converge to a solution in the sense of the analogous proof for the single-layer per-
ceptron, the generalized delta rule has been used successfully in numerous prob-
lems of practical interest. This success has established multilayer perceptron-like
machines as one of the principal models of neural networks currently in use.

Perceptron for two pattern classes

In its most basic form, the perceptron learns a linear decision function that di-
chotomizes two linearly separable training sets. Figure 12.14(a) shows schemat-
ically the perceptron model for two pattern classes. The response of this basic
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FIGURE 12.14
Two equivalent
representations of
the perceptron

WY

d(x) = Zw:xs' T Wy

mode] for two Pattern —
pattern classes. veetors +1 +1if d(x) >0
X
_ 0=
-1 -1 if d{x) <0
!
Activation element
Xy
1
e et
Weights
wl
h’l
R
Pattern ) n
vectors | +1 0 2w >~ W
X i=1
x" = "
-1 if E W, < = Wpe
t=1
Activation element
xﬂ

device is based on a weighted sum of its inputs; that is,

#
d(X) = 2 W, X; + Wy +1s (122-29)
1= 1
which is a linear decision function with respect to the components of the pat-
tern vectors. The coefficients w,,i = 1.2,...,n,n + 1,called weights, modify the
inputs before they are summed and fed into the threshold element. In this sense.
weights are analogous to synapses in the human neural system. The function
that maps the output of the summing junction into the final output of the deviee
sometimes is called the activation function.
When d(x) > 0 the threshold element causes the output of the perceptronl
to be +1, indicating that the pattern x was recognized as belonging to class @i-
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The reverse is true when d(x) < (0. This mode of operation agrees with the com-
ments made earlier in connection with Eq. (12.2-2) regarding the use of a sin-
gle decision function for two pattern classes. When d(x) = 0, x lies on the
decision surface separating the two pattern classes. giving an indeterminate con-
dition. The decision boundary implemented by the perceptron is obtained by set-
ting Eq. (12.2-29) equal to zero:

n

d(x) = D wx; + w,, =0 (12.2-30)

=1
or
WiX, + wyxy + o+ wx, + w,, = 0, (12.2-31)

which is the equation of a hyperplane in #-dimensional pattern space. Geo-
metrically, the first n coefficients establish the orientation of the hyperplane.
whereas the last coefficient, w, 1, is proportional to the perpendicular distance
from the origin to the hyperplane. Thus if w,,,; = 0,the hyperplane goes through
the origin of the pattern space. Similarly, if w; = 0, the hyperplane is paraliel to
the x-axis.

The output of the threshold element in Fig. 12.14(a) depends on the sign of
d(x}. Instead of testing the entire function to determine whether it is positive
or negative, we could test the summation part of Eq. (12.2-29) against the term
w,+.1n which case the output of the system would be

+1 if E WX, > —W, 4,
0= o (12.2-32)
-1 if Ew,x, < Wy
=]

This implementation is equivalent to Fig. 12.14(a) and is shown in Fig. 12.14(b),
the only differences being that the threshold function is displaced by an amount
—w,. and that the constant unit input is no longer present. We return to the
equivalence of these two formulations later in this section when we discuss im-
plementation of multilayer neural networks.

Another formulation used frequently is to augment the patfern vectors by ap-
pending an additional (n + 1)st element, which is always equal to 1, regardless
of ¢lass membership. That is, an augmented pattern vector y is created from a
pattern vector x by letting y; = x,,i = 1, 2,...,n, and appending the additional
element v,,, = 1. Equation (12.2-29) then becomes

1+

d(y) = 2 w,y,

(12.2-33)

where y = (v, Y2, -.os Yus _1)1 is now an augmented paitern vector, and
w = (1w, Wy, ..., W, w,,ﬂ) is called the weight vector. This expression is
usually more convenient in terms of notation. Regardless of the formulation
used, however, the key problem is to find w by using a given training set of
pattern vectors from each of two classes.
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FIGURE 12.15
(a) Patterns
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Training algorithms
The algorithms developed in the following discussion are representative of the
numerous approaches proposed over the years for training perceptrons.

Linearly separable classes A simple, iterative algorithm for obtaining a solution
weight vector for two linearly separable training sets follows. For two training sets
of augmented pattern vectors belonging to pattern classes w; and w,, respectively,
let w(1) represent the initial weight vector, which may be chosen arbitrarily. Then,
at the kth iterative step, if y(k) € @, and w’ (k)y(k) = 0, replace w(k) by

wik + 1) = w(k) + cy(k) (12.2-34)

where ¢ is a positive correction increment. Conversely, if y(k) = w; and
w!(k)y(k) = 0, replace w(k) with

wik + 1) = w(k) — cylk). (12.2-35)
Otherwise, leave w(k) unchanged:
w(k + 1) = w(k). (12.2-36)

This algorithm makes a change in w only if the pattern being considered at the
kth step in the training sequence is misclassified. The correction increment ¢ is
assumed to be positive and, for now, 1o be constant. This algorithm sometimes is
referred to as the fixed increment correction rule.

Convergence of the algorithm occurs when the entire training set for both
classes is cycled through the machine without any errors. The fixed increment
correction rule converges in a finite number of steps if the two training sets of
patterns are linearly separable. A proof of this result, sometimes called the
perceptron training theorem, can be found in the books by Duda, Hart, and Stork
[2001]; Tou and Gonzalez [1974]; and Nilsson [1965].

{# Consider the two training sets shown in Fig. 12.15(a), each consisting of two
patterns. The training algorithm will be successful because the two training sets
are linearly separable. Before the algorithm is applied the patterns are augmented.

d(x) = =25, +1=0

X2 X3
1 L @ l .
O (e 1y & O
0 ] (0 1
)€y
Y€
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yielding the training set {(0,0,1), (0,1, 1)" } for class , and {(1,0,1)", (1.1,1)’}

for class w.. Letting ¢ = 1,w(1) = 0,and presenting the palterns in order results
in the following sequence of steps:
07 0
w (Dy(1) =10,0.0]; 0 | =0 w2)=w(l)+y(1)=1|0
B ]
[ 0] 0
w(2)y(2) =10,0,1]} 1 | =1 wi3)=w2)=10
1] 1
[ 1] -1
WEN3) = (0,01 0] =1 wd)=w3) -y3)=| 0
L1 0
1 -1
wi(4)y(4) = [~1,0.0][ 1 | =1 wiS)=w4)=| 0
1 0

where corrections in the weight vector were made in the first and third steps
because of misclassifications, as indicated in Eqgs. (12.2-34) and (12.2-35). Be-
cause a solution has been obtained only when the algorithm yields a complete
error-free iteration through all training patterns, the training set must be pre-
sented again. The machine learning process is continued by letting y(5) = y(1),
y(6) = y(2),y(7) = y(3),and y(8) = y(4), and proceeding in the same man-
ner. Convergence is achieved at k = 14, yielding the solution weight vector
w(14) = (~2,0,1)". The corresponding decision function is d(y) = —2y, + 1.
Going back to the original pattern space by letting x, = y, yields
d(x) = —2x; + 1, which, when set equal to zero, becomes the equation of the
decision boundary shown in Fig. 12.15(b).

Nonseparable classes In practice, linearly separable pattern classes are the
(rare) exception, rather than the rule. Consequently, a significant amount of re-
search effort during the 1960s and 1970s went into development of techniques
designed to handle nonseparable pattern classes, With recent advances in the
training of neural networks, many of the methods dealing with nonseparable be-
havior have become merely items of historical interest. One of the early meth-
ods, however, is directly relevant to this discussion: the original delta rule. Known
as the Widrow-Hoff, or least-mean-square (LMS) delta rule for training per-
ceptrons, the method minimizes the error between the actual and desired
response at any training step.
Consider the criterion function

J(wy = —(r — w'yy (12.2-37)

N | =

where r is the desired response (that is, »r = +1 if the augmented training pat-
tern vector y belongs to class w,, and r = —1 if y belongs to class ,). The task
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is to adjust w incrementally in the direction of the negative gradient of J(w) in
order to seek the minimum of this function, which occurs when r = w'y; that
is, the minimum corresponds to correct classification. If w{k) represents the
weight vector at the kth iterative step, a general gradient descent algorithm may
be written as

aJ(w)
wk+ 1) =wk) - «a (12.2-38)
W Jwawik)
where w(k + 1) is the new value of w,and o > Q gives the magnitude of the cor-
rection. From Eq. (12.2-37),
aJ(w

= —(r — wlyy. (12.2-39)

Substituting this result into Eq. (12.2-38) yields

wik + 1) = w(k) + afr(k) — wi(k)y(k)ly(k) (12.2-40)

with the starting weight vector, w(1), being arbitrary.
By defining the change (delta) in weight vector as

Aw = w(k + 1) — w(k) (12.2-41)
we can write Eq. (12.2-40) in the form of a delta correction algorithm:
Aw = ae(k)y(k) (12.2-42)
where
e(k) = r(k) — wi(k)y(k) (12.2-43)

is the error committed with weight vector w(k) when pattern y(k) is presented.
Equation (12.2-43) gives the error with weight vector w(k). If we change it
to w(k + 1), but leave the pattern the same, the error becomes
e(k) = r(k) — w'(k + Dy(k). (12.2-44)
The change in error then is
Ae(k) = [r(k) — wi(k + Ly(k)] = [r(k) — w/(k)y(k)]
= —[wi(k + 1) — w(k)]y(k) (12.2-45)
= —AwTy(k).
But Aw = ae(k)y(k),s0
Ae = ~ae(k)y’ (k)y(k)
= —ae(k)|y (k)|
Hence changing the weights reduces the error by a factor afly(k)|* The next
input pattern starts the new adaptation cycle, reducing the next error by a fac-
tor ally(k + 1) and so on.
The choice of « controls stability and speed of convergence (Widrow and

Stearns [1985]). Stability requires that 0 < a < 2. A practical range for @ is
0.1 < a < 1.0. Although the proof is not shown here, the algorithm of

(12.2-46)
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Eqg. (12.2-40) or Eqgs. (12.2-42) and (12.2-43) converges to a solution that mini-
mizes the mean square error over the patterns of the training set. When the
pattern classes are separable. the solution given by the algorithm just discussed
may or may not produce a scparating hyperplane. That 15, a mean-square-error
solution does not imply a solution in the sense of the perceptron training the-
orem. This uncertainty is the price of using an algorithm that converges under
both the separable and nonseparable cases in this particular formulation.

The two perceptron training algorithms discussed thus far can be extended
to more than two classes and to nonlinear decision functions. Based on the his-
torical comments made earlier. exploring multiclass training algorithms here
has little merit. Instead, we address multiclass training in the context of neural
networks.

Multilayer feedforward neural networks

In this section we focus on decision functions of multiclass pattern recognition
problems, independent of whether or not the classes are separable, and involv-
ing architectures that consist of layers of perceptron computing elements.

Basic architecture Figure 12.16 shows the architecture of the neural network
model under consideration. It consists of layers of structurally identical com-
puting nodes (neurons) arranged so that the output of every neuron in one layer
feeds into the input of every neuron in the next layer. The number of neurons
in the first layer. called layer A,is N 4. Often, N, = n,the dimensionality of the
input pattern vectors. The number of neurons in the output layer, called layer
Q. is denoted N,. The number N, equals W, the number of pattern classes that
the neural network has been trained to recognize. The network recognizes a
pattern vector x as belonging to class w, if the ith output of the network is *high”
while all other outputs are “low,” as explained in the following discussion.

As the blowup in Fig. 12.16 shows, each neuron has the same form as the
perceptron model discussed earlier (see Fig. 12.14), with the exception that the
hard-limiting activation function has been replaced by a soft-limiting “sigmoid™
function. Differentiability along all paths of the neural network is required in
the development of the training rule. The following sigmoid activation function
has the necessary differentiability:

1

h;’(’,’) = 1 + e_(lf+6.')/e“

(12.2-47)
where I, j = 1.2, ..., Ny, Is the input to the activation element of each node
in layer J of the network, §; is an offset, and 6, controls the shape of the sig-
moid function.

Equation (12.2-47) is plotted in Fig. 12,17, along with the limits for the “high”
and “low” responses out of each node. Thus when this particular function is
used, the system outputs a high reading for any value of /; greater than 6;. Sim-
ilarly, the system outputs a low reading for any value of /, less than 6,. As
Fig. 12.17 shows, the sigmoid activation function always is positive, and it can
reach its limiting values of 0 and 1 only if the input to the activation element is
infinitely negative or positive, respectively. For this reason, values near 0 and 1
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O = () HGURE 12.17 The
sigmoidal
L activation
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(say, 0.05 and 0.95) define low and high values at the output of the neurons in
Fig. 12.16. In principle, different types of activation functions could be used for
different layers or even for different nodes in the same layer of a neural network.
In practice, the usual approach is to use the same form of activation function
throughout the network.

With reference to Fig. 12.14(a), the offset 8, shown in Fig. 12.17 is analogous
to the weight coefficient w, ., in the earlier discussion of the perceptron. Im-
plementation of this displaced threshold function can be done in the form of
Fig. 12.14(a) by absorbing the offset 8, as an additional coefficient that modifies
a constant unity input to all nodes in the network. In order to follow the nota-
tion predominantly found in the literature, we do not show a separate constant
input of +1 into all nodes of Fig. 12.16. Instead, this input and its modifying
weight 6, are integral parts of the network nodes. As noted in the blowup in
Fig. 12.16, there is one such coefficient for each of the N, nodes in layer J.

In Fig. 12.16, the input to a node in any layer is the weighted sum of the out-
puts from the previous layer. Letting layer K denote the layer preceding layer
J (no alphabetical order is implied in Fig. 12.16) gives the input to the activation
element of each node in layer J, denoted I;:

Ny
Ij = kzlekok (122-48)

forj = 1,2,...,N,,where N, is the number of nodes in layer J, Ny is the num-
ber of nodes in layer K, and w, are the weights modifying the outputs O, of the
nodes in layer K before they are fed into the nodes in layer J. The outputs of
layer K are

Ok = hk(]o'\) (122“49)

fork =1,2,...,Ng.

A clear understanding of the subscript notation used in Eq. (12.2-48) is im-
portant, because we use it throughout the remainder of this section. First, note
that/,,j = 1,2,...,N,, represents the input to the activation element of the jth
node in layer J. Thus /; represents the input to the activation element of the
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first (topmost) node in layer J, I, represents the input to the activation element
of the second node in layer J, and so on. There are Ny inputs to every node in
layer J, but each individual input can be weighted differently. Thus the N x in-
puts to the first node in layer J are weighted by coefficients w, .,k = 1,2,...,N [
the inputs to the second node are weighted by coefficients wy,, k = 1,2, ... Ny
and so on. Hence a total of N; X Ny coefficients are necessary to specify the
weighting of the outputs of layer X as they are fed into layer J. An additional
N, offset coefficients, §,, are needed to specify completely the nodes in layer J.

Substitution of Eq. (12.2-48) into (12.2-47) yields
1
h(1) = - , (12.2-50)

NA
1+ "(E"‘,Aoa +9,)/Hn
e Mel

which is the form of activation function used in the remainder of this section.

During training, adapting the neurons in the output layer is a simple matter
because the desired output of each node is known. The main problem in train-
ing a multilayer network lies in adjusting the weights in the so-called hidden
lavers. That is, in those other than the output layer.

Training by back propagation 'We begin by concentrating on the output layer.
The total squared error between the desired responses, rq-and the corresponding
actual responses, O, of nodes in (output) layer Q, is
1 2
Eg=323(r,-0,) (12.2-51)
g=1

where N, is the number of nedes in output layer Q and the 3 is used for con-
venience in notation for taking the derivative later.

The objective is to develop a training rule, similar to the delta rule, that al-
lows adjustment of the weights in each of the layers in a way that seeks a min-
imum to an error function of the form shown in Eq. (12.2-51). As before.
adjusting the weights in proportion to the partial derivative of the error with
respect to the weights achieves this result. In other words,

E,

aw[”,

(12.2-52)

Aw,, = —a

where layer P precedes layer Q, Aw,, is as defined in Eq. (12.2-42),and a 15 2
positive correction increment.

The error £, is a function of the outputs, O, which in turn are functions of the
inputs /,. Using the chain rule, we evaluate the partial derivative of E, as follows:

9E,  OE, al,

= ) (12.2-53)
aw,, al, dw,,
From Eq. (12.2-48),
al, g  Np
¢ _ ’ - 0. 12.2-54)
dw aw 2 w0 = 0, (

qp qp p=1\
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Substituting Egs. (12.2-53) and (12.2-54) into Eq. (12.2-52) vields

Aw,, = ~a (:jff 0,
= a,0, (12.2-55)
where
8, = — d—E-g (12.2-56)
g ol,

In order to compute 9E,/ df,. we use the chain rule to express the partial
derivative in terms of the rate of change of Eg with respect to O, and the rate
of change of O, with respect to I,. That is,

8Eq  9Eg 90,

8, =— = 12.2-5
¢ al, 80, al, (122:57)
From Eq. (12.2-51),
6E,
—==—(r,~ 0, (12.2-58)
aoq q q
and, from Eq. (12.2-49),
B, hf1,) = hiy(1,). (12.2-59)
Substituting Eqs. (12.2-58) and (12.2-39) into Eq. (12.2-57) gives
8, = (r, — O (1), (12.2-60)

which is proportional to the error quantity (r, — O,). Substitution of
Egs. (12.2-56) through (12.2-58) into Eq. (12.2-55) finally yields
Aw,, = afr, = O,)h)(1,)0,

q

= 3,0, (12.2-61)

After the function hq(lq) has been specified, all the terms in Eq. (12.2-61) are
known or can be observed in the network. In other words, upon presentation of
any training pattern to the input of the network, we know what the desired re-
sponse. r,, of each output node should be. The value O, of each output node
can be observed as can /,, the input to the activation elements of layer 0, and
O,.the output of the nodes in layer P.Thus we know how to adjust the weights
that modify the links between the last and next-to-last layers in the network.

Continuing to work our way back from the output layer, let us now analyze

what happens at layer P. Proceeding in the same manner as above yields

Aw,, = a(rp - Op)h:v(l,r )Of
= ad,0, (12.2-62)
where the error term is
8, = (r, = O (L) (12.2-63)
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With the exception of r,,, all the terms in Eqgs. (12.2-62) and (12.2-63) either are
known or can be observed in the network. The term r, makes no sense in an in-
ternal layer because we do not know what the response of an internal node in
terms of pattern membership should be. We may specify what we want the re-
sponse r to be only at the outputs of the network where final pattern classifi-
cation takes place. If we knew that information at internal nodes, there would
be no need for further layers. Thus we have to find a way to restate & p in terms
of quantities that are known or can be observed in the network.
Going back to Eq. (12.2-57), we write the error term for layer P as

dE 3E, 90
§,=——P =t £ (12.2-64)

The term 00,/91, presents no difficulties. As before, it is
a0,  on(I,)
of, ol

p

= n(L), (12.2-65)

which is known once £, is specified because 7 » can be observed. The term that
produced r, was the derivative 9E,/90,,so this term must be expressed in a way
that does not contain r - Using the chain rule, we write the derivative as

J9Ep Y OEp Oy _ §(_6_€a)_6, S, 0
90, =1 981,90, S\ el /a0, &P

Ne aEP)
= -l 12.2-66)
3 o1, )" (
¢
= anwqp
g=1

where the last step follows from Eq. (12.2-56). Substituting Egs. (12.2-65) and
(12.2-66) into Eq. (12.2-64) yields the desired expression for b

Ne
8, = h)(I,) 21 8y Wyp (12.2-67)
P

The parameter 8, can be computed now because all its terms are known. Thus
Egs. (12.2-62) and (12.2-67) establish completely the training rule for layer
P.The importance of Eq. (12.2-67) is that it computes 8, from the quantities
8, and w,,, which are terms that were computed in the layer immediately fol-
lowing layer P. After the error term and weights have been computed for
layer P, these quantities may be used similarly to compute the error and
weights for the layer immediately preceding layer P. In other words, we have
found a way to propagate the error back into the network, starting with the
error at the output layer.

We may summarize and generalize the training procedure as follows. For any
layers K and J, where layer K immediately precedes layer ./, compute the weights
wj. which modify the connections between these two layers, by using

Aw,, = a8;0,. (12.2-68)
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If layer J is the output layer, 6, is

8, = (r, — O)i(1). (12.2-69)
If layer J is an internal layer and Jayer P is the next layer (to the right), then §,
is given by

Np
8 = h(l) 2{ 8,1, (12.2-70)
=

forj = 1.2,....N,.Using the activation function in Eq.(12.2-50) with 8, = 1 yields
h(1)=0(1-0) (12.2-71)

i
in which case Eqgs. (12.2-69) and (12.2-70) assume the following, particularly at-
tractive forms:

8; = (r, ~ 0)O{1 - 0) (12.2-72)

)
for the output layer, and

A’
5 =0(1-0)S 8w, (12.2-73)
p=1

for internal layers. In both Eqs. (12.2-72) and (12.2-73),j = 1,2,...,N,.

Equations (12.2-68) through (12.2-70) constitute the generalized delta rule
for training the multilayer feedforward neural network of Fig. 12.16. The process
starts with an arbitrary (but not all equal) set of weights throughout the network.
Then application of the generalized delta rule at any iterative step involves two
basic phases. In the first phase, a training vector is presented to the network
and is allowed to propagate through the layers to compute the output O; for
each node. The outputs O, of the nodes in the output layer are then compared
against their desired responses, 7, to generate the error terms &,. The second
phase involves a backward pass through the network during which the appro-
priate error signal is passed to each node and the corresponding weight changes
are made. This procedure also applies to the bias weights 8,. As discussed ear-
lier in some detail, these are treated simply as additional weights that modify a
unit input into the summing junction of every node in the network.

Common practice is to track the network error, as well as errors associated
with individual patterns. In a successful training session, the network error de-
creases with the number of iterations and the procedure converges to a stable
set of weights that exhibit only small fluctuations with additional training. The
approach followed to establish whether a pattern has been classified correctly
during training is to determine whether the response of the node in the output
layer associated with the pattern class from which the pattern was obtained is
high, while all the other nodes have outputs that are low, as defined earlier.

After the system has been trained, it classifies patterns using the parameters
established during the training phase. In normal operation, all feedback paths
are disconnected. Then any input pattern is allowed to propagate through the
various layers, and the pattern is classified as belonging to the class of the out-
put node that was high, while all the others were low. If more than one output
is labeled high, or if none of the outputs is so labeled, the choice is one of de-
claring a misclassification or simply assigning the pattern to the class of the out-
put node with the highest numerical value.
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shapes shown in Fig. 12.18(a). The output nodes were monitored during training,
The network was said to have learned the shapes from all four classes when, for
any training pattern from class w;, the elements of the output layer yielded
O, = 0.95and 0, = 0.05,forg = 1,2,...,Ng;q # i.In other words, for any pat-
tern of class w;, the output unit corresponding to that class had to be high (=0.95)
while, simultaneously, the output of all other nodes had to be low (=0.05).

The second part of training was carried out with noisy samples, generated as
follows. Each contour pixel in a noise-free shape was assigned a probability V
of retaining its original coordinate in the image plane and a probability
R =1~ V of being randomly assigned to the coordinates of one of its eight
neighboring pixels. The degree of noise was increased by decreasing V (that is,
increasing R). Two sets of noisy data were generated. The first consisted of 100
noisy patterns of each class generated by varying R between 0.1 and 0.6, giving
a total of 400 patterns. This set, called the rest set, was used to establish system
a performance after training,

FIGURE 12.19
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used 1o recognize
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Fig. 12.18.
(Courtesy of Dr.
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Department,
Southern llinois
University.)
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FIGURE 12.20
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Several noisy sets were generated for training the system with noisy data.
The first set consisted of 10 samples for each class, generated by using R, = 0,
where R, denotes a value of R used to generate training data. Starting with the
weight vectors obtained in the first (noise-free) part of training, the system was
allowed to go through a learning sequence with the new data set. Because R =0
implies no noise, this retraining was an extension of the earlier, noise-free train-
ing. Using the resulting weights learned in this manner, the network was sub-
jected to the test data set yielding the results shown by the curve labeled R, = 0
in Fig. 12.20. The number of misclassified patterns divided by the total number
of patterns tested gives the probability of misclassification, which is a measure
commonly used to establish neural network performance.

Next, starting with the weight vectors learned by using the data generated
with R, = 0, the system was retrained with a noisy data set generated with
R, = 0.1.The recognition performance was then established by running the test
samples through the system again with the new weight vectors. Note the sig-
nificant improvement in performance. Figure 12.20 shows the results obtained
by continuing this retraining and retesting procedure for R, = 0.2,0.3,and 0.4.
As expected if the system is learning properly, the probability of misclassifying
patterns from the test set decreased as the value of R, increased because the sys-
tem was being trained with noisier data for higher values of R,.The one ex-
ception in Fig. 12.20 is the result for R, = 0.4. The reason is the small number
of samples used to train the system. That is, the network was not able to adapt
itself sufficiently to the larger variations in shape at higher noise levels with the
number of samples used. This hypothesis is verified by the results in Fig. 12.21.
which show a lower probability of misclassification as the number of training
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samples was increased. Figure 12.21 also shows as a reference the curve for
R, = 0.3 from Fig, 12.20.

The preceding results show that a three-layer neural network was capable of
learning to recognize shapes corrupted by noise after a modest level of training.
Even when trained with noise-free data (R, = 0in Fig. 12.20), the system was able
to achieve a correct recognition level of close to 77% when tested with data high-
ly corrupted by noise (R = 0.6 in Fig. 12.20). The recognition rate on the same
data increased to about 99% when the system was trained with noisier data
(R, = 0.3 and 0.4). It is important to note that the system was trained by increas-
ing its classification power via systematic, small incremental additions of noise.
When the nature of the noise is known, this method is ideal for improving the
convergence and stability properties of a neural network during learning.

Complexity of decision surfaces We have already established that a single-
layer perceptron implements a hyperplane decision surface. A natural question
at this point is, What is the nature of the decision surfaces implemented by a mul-
tilayer network, such as the model in Fig. 12.16? It is demonstrated in the fol-
towing discussion that a three-layer network is capable of implementing
arbitrarily complex decision surfaces composed of intersecting hyperplanes.
As a starting point, consider the two-input, two-layer network shown in
Fig. 12.22(a). With two inputs, the patterns are two dimensional, and therefore,
each node in the first layer of the network implements a line in 2-D space. We
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FIGURE 12.22 (a) A two-input, two-layer, feedforward neural network. (b) and (c) Ex-
amples of decision boundaries that can be implemented with this network.

denote by 1 and 0, respectively, the high and low outputs of these two nodes.
We assume that a 1 output indicates that the corresponding input vector to a
node in the first layer lies on the positive side of the line. Then the possible
combinations of outputs feeding the single node in the second layer are (1, 1),
(1,0), (0. 1).and (0, 0). If we define two regions, one for class o, lying on the
positive side of both lines and the other for class w, lying anywhere else, the
output node can classify any input pattern as belonging to one of these two
regions simply by performing a logical AND operation. In other words, the
output node responds with a 1, indicating class w,, only when both outputs
from the first layer are 1. The AND operation can be performed by a neural
node of the form discussed earlier if 8, is set to a value in the half open inter-
val (1, 2]. Thus if we assume 0 and 1 responses out of the first layer, the re-
sponse of the output node will be high, indicating class w,, only when the sum
performed by the neural node on the two outputs from the first layer is greater
than 1. Figures 12.22(b) and (c) show how the network of Fig. 12.22(a) can suc-
cessfully dichotomize two pattern classes that could not be separated by a
single linear surface.

If the number of nodes in the first layer were increased to three, the network
of Fig. 12.22(a) would implement a decision boundary consisting of the intef-
section of three lines. The requirement that class w, lie on the positive side of
all three lines would yield a convex region bounded by the three lines. In fact,
an arbitrary open or closed convex region can be constructed simply by in-
creasing the number of nodes in the first layer of a two-layer neural network.

'The next logical step is to increase the number of layers to three. In this casc
the nodes of the first layer implement lines, as before. The nodes of the second
layer then perform AND operations in order to form regions from the various
lines. The nodes in the third layer assign class membership to the various regions.
For instance. suppose that class w, consists of two distinct regions, each of which
is bounded by a different set of lines. Then two of the nodes in the second layer
are for regions corresponding to the same pattern class. One of the output nodes
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needs to be able to signal the presence of that class when either of the two nodes
in the second layer goes high. Assuming that high and low conditions in the sec-
ond layer are denoted 1 and 0, respectively, this capability is obtained by mak-
ing the output nodes of the network perform the logical OR operation. In terms
of neural nodes of the form discussed earlier, we do so by setting 6, to a value in
the half-open interval [0, 1). Then, whenever at least one of the nodes in the sec-
ond layer associated with that output node goes high (outputs a 1), the corre-
sponding node in the output layer will go high, indicating that the pattern being
processed belongs to the class associated with that node.

Figure 12.23 summarizes the preceding comments. Note in the third row that
the complexity of decision regions implemented by a three-layer network is, in
principle, arbitrary. In practice, a serious difficulty usually arises in structuring
the second layer to respond correctly to the various combinations associated
with particular classes. The reason is that lines do not just stop at their inter-
section with other lines, and, as a result, patterns of the same class may occur on
both sides of lines in the pattern space. In practical terms, the second layer may
have difficulty figuring out which lines should be included in the AND opera-
tion for a given pattern class—or it may even be impossible. The reference to
the exclusive-OR problem in the third column of Fig. 12.23 deals with the fact
that, if the input patterns were binary, only four different patterns could be con-
structed in two dimensions. If the patterns are so arranged that class w, consists
of patterns {(0, 1). (1,0)} and class w, consists of the patterns {(0,0), (1,1)},
class membership of the patterns in these two classes is given by the exclusive-
OR (XOR) logical function, which is 1 onily when one or the other of the two
variables is 1, and it is 0 otherwise. Thus an XOR value of 1 indicates patterns
of class w;, and an XOR value of 0 indicates patterns of class w,.
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The preceding discussion is generalized to n dimensions in a straightforward
way: Instead of lines, we deal with hyperplanes. A single-layer network imple-
ments a single hyperplane. A two-layer network implements arbitrarily convex
regions consisting of intersections of hyperplanes. A three-layer network im-
plements decision surfaces of arbitrary complexity. The number of nodes used
in each layer determines the complexity of the last two cases. The number of
classes in the first case is limited to two. In the other two cases, the number of
classes is arbitrary, because the number of output nodes can be selected to fit
the problem at hand.

Considering the preceding comments, it is logical to ask, Why would anyone
be interested in studying neural networks having more than three layers? After
all, a three-layer network can implement decision surfaces of arbitrary com-
plexity. The answer lies in the method used to train a network to utilize only
three layers. The training rule for the network in Fig. 12.16 minimizes an error
measure but says nothing about how to associate groups of hyperplanes with
specific nodes in the second layer of a three-layer network of the type discussed
earlier. In fact, the problem of how to perform trade-off analyses between the
number of layers and the number of nodes in each layer remains unresolved. In
practice, the trade-off is generally resolved by trial and error or by previous
experience with a given problem domain.

a¥&] Structural Methods

The techniques discussed in Section 12.2 deal with patterns quantitatively and
largely ignore any structural relationships inherent in a pattern’s shape. The
structural methods discussed in this section, however, seek to achieve pattern
recognition by capitalizing precisely on these types of relationships.

12.3.1 Matching Shape Numbers

A procedure analogous to the minimum distance concept introduced in Sec-
tion 12.2.1 for pattern vectors can be formulated for the comparison of region
boundaries that are described in terms of shape numbers. With reference to the
discussion in Section 11.2.2, the degree of similarity, k, between two region
boundaries (shapes) is defined as the largest order for which their shape num-
bers still coincide. For example, let @ and b denote shape numbers of closed
boundaries represented by 4-directional chain codes. These two shapes have 2
degree of similarity k if

sf{a) =s/(b) forj=4,68.. .k

: (12.3-1)
s;(a) # si(b) forj=k+ 2,k +4,..

where s indicates shape number and the subscript indicates order. The distance
between two shapes ¢ and b is defined as the inverse of their degree of similarity:

D(a,b) =~ (12.3-2)

’E.
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This distance satisfics the following properties:
D(a,b) =0
D(a.b) =0 iffa=05b (12.3-3)
D(a,c) < max[D(a, b), D(b,¢)].

Either k or D may be used to compare two shapes. If the degree of similarity is
used, the larger & is, the more similar the shapes are (note that & is infinite for
identical shapes). The reverse is true when the distance measure is used,

Suppose that we have a shape fand want to find its closest match in a set of
five other shapes (4, b, ¢, d, and e), as shown in Fig. 12.24(a). This problem is anal-
ogous to having five prototype shapes and trying to find the best match to a
given unknown shape. The search may be visualized with the aid of the similarity
tree shown in Fig. 12.24(b). The root of the tree corresponds to the lowest pos-
sible degree of similarity, which, for this example, is 4. Suppose that the shapes
are identical up to degree 8, with the exception of shape a, whose degree of sim-
ilarity with respect to all other shapes is 6. Proceeding down the tree, we find that
shape d has degree of similarity 8 with respect to all others, and so on. Shapes
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EXAMPLE 12.8:
[llustration of
string matching.

fand ¢ match uniquely, having a higher degree of similarity than any other two
shapes. At the other extreme, if @ had been an unknown shape, all we could
have said using this method is that @ was similar to the other five shapes with
degree of similarity 6. The same information can be summarized in the form of
a similarity matrix, as shown in Fig. 12.24(c).

12.3.7 String Matching

Suppose that two region boundaries, @ and b, are coded into strings (see
Section 11.5) denoted a,a,, ..., a, and b b, ..., b,,, respectively. Let o repre-
sent the number of matches between the two strings, where a match occurs in
the kth position if a, = b;. The number of symbols that do not match is

B = max(la), |b}) ~ @ (12.3-4)

where larg| is the length (number of symbols) in the string representation of
the argument. It can be shown that 8 = 0if and only if 2 and b are identical (see
Problem 12.21).
A simple measure of similarity between g and b is the ratio
(4 [44

R B~ max(al ) —a (12.3-5)
Hence R is infinite for a perfect match and 0 when none of the symbols in a
and b match (a = 0 in this case). Because matching is done symbol by symbol,
the starting point on each boundary is important in terms of reducing the
amount of computation. Any method that normalizes to, or near, the same start-
ing point is helpful, so long as it provides a computational advantage over brute-
force matching, which consists of starting at arbitrary points on each string and
then shifting one of the strings (with wraparound) and computing Eq. (12.3-5)
for each shift. The largest value of R gives the best match.

% Figures 12.25(a) and (b) show sample boundaries from each of two object
classes, which were approximated by a polygonal fit (see Section 11.1.2). Fig-
ures 12.25(c) and (d) show the polygonal approximations corresponding to the
boundaries shown in Figs. 12.25(a) and (b), respectively. Strings were formed
from the polygons by computing the interior angle, 8, between segments as each
polygon was traversed clockwise. Angles were coded into one of eight possible
symbols, corresponding to 45° increments; that is, a,:0° < ¢ < 45%
@:45° < 0 = 90°...;24:315° < 0 = 360°.

Figure 12.25(e) shows the results of computing the measure R for five sam-
ples of object 1 against themselves. The entries correspond to R values and, for
example, the notation 1.c refers to the third string from object class 1. Fig-
ure 12.25(f) shows the results of comparing the strings of the second object class
against themselves. Finally, Fig. 12.25(g) shows a tabulation of R values obtained
by comparing strings of one class against the other. Note that, here. all R va]ue_s
are considerably smaller than any entry in the two preceding tabulations, indi-
cating that the R measure achieved a high degree of discrimination between
the two classes of objects. For example, if the class membership of string 1.2 had
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been unknown, the smallest value of R resulting from comparing this string
against sample (prototype) strings of class 1 would have been 4.7 [Fig. 12.25(e)].
By contrast, the /argest value in comparing it against strings of class 2 would
have been 1.24 [Fig. 12.25(g)]. This resuit would have led to the conclusion that
string 1.a is a member of object class 1. This approach to classification is anal-
ogous to the minimum distance classifier introduced in Section 12.2.1. £

t7.".. Syntactic Recognition of Strings

Syntactic methods provide a unified methodology for handling structural recog-
nition problems. Basically, the idea behind syntactic pattern recognition is the
specification of a set of pattern primitives (see Section 11.5), a set of rules (in the
form of a grammar) that governs their interconnection, and a recognizer (called
an automaton), whose structure is determined by the set of rules in the gram-
mar. First we consider string grammars and automata and then extend these
ideas in the next section to tree grammars and their corresponding automata.

Structural Methods
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String grammars

Suppose that we have two classes, w; and w,, whose patterns are strings of prim-
itives, generated by one of the methods discussed in Section 11.5. We can in-
terpret each primitive as being a symbol permissible in the alphabet of some
grammar, where a grammar is a set of rules of syntax (hence the name syntac-
tic recognition) that govern the generation of sentences formed from symbols
of the alphabet, The set of sentences generated by a grammar, G, is called its lan-
guage and is denoted L(G). Here, sentences are strings of symbols (which in
turn represent patterns), and languages correspond to pattern classes.

Consider two grammars, G, and G,, whose rules of syntax are such that G,
only allows generation of sentences that correspond to patterns from class w,,
and G, only allows generation of sentences corresponding to patterns from class
w,. After two grammars with these properties have been established, the syn-
tactic pattern recognition process, in principle, is straightforward. For a sentence
representing an unknown pattern, the task is to decide in which language the pat-
tern represents a valid sentence. If the sentence belongs to L{G, ), we say that
the pattern is from class w, . Similarly, the pattern is said to be from class w, if the
sentence is valid in L{G,). A unique decision cannot be made if the sentence be-
longs to both languages. A sentence that is invalid in both languages is rejected.

When there are more than two pattern classes, the syntactic classification
approach is the same as described in the preceding paragraph, with the excep-
tion that more grammars (at least one per class) are involved in the process. For
multiclass classification, a pattern belongs to class w, if it is a valid sentence
only of L(G,). As before, a unique decision cannot be made if a sentence be-
longs to more than one language. A sentence that is invalid over all languages
is rejected.

When dealing with strings, we define a grammar as the 4-tuple

G=(N,Z,PS) (12.3-6)
where

N is a finite set of variables called nonterminals,

Y is a finite set of constants called terminals,

P 1is a set of rewriting rules called productions, and
Sin N is called the starting symbol.

It is required that N and = be disjoint sets. In the following discussion, capital
letters. A. B,..., S,..., denote nonterminals. Lowercase letters, a, b, c,... at the
beginning of the alphabet denote terminals. Lowercase letters, v, w, x, y, Z t0-
ward the end of the alphabet denote strings of terminals. Lowercase Greek let-
ters ., B, 6,... denote strings of mixed terminals and nonterminals. The empty
sentence (the sentence with no symbols) is denoted A. Finally, for a set V of sym-
bols, the notation V* denotes the set of all sentences composed of elements
from V.

String grammars are characterized by the form of their productions. Of par-
ticular interest in syntactic pattern recognition are regular grammars and contex!-

free grammars. Regular grammars have productions only of the form A —» aBor
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A — a,with A and B in N and a in 2. Contexi-free grammars have productions
only of the form A — a,with A in N and e in the set (N U Z)*;that is,a can be
any string composed of terminals and nonterminals, except the empty string,

Before proceeding, it will be useful to consider the mechanics of how gram-
mars generate object classes. Suppose that the object shown in Fig. 12.26(a) is
represented by its (pruned) skeleton and that we define the primitives shown
in Fig. 12.26(b) to describe the structure of this (and similar) skeletons. Consider
the grammar G = (N, X, P, §), with N = {A, B, §}, £ = {a, b, ¢} and
P={5—4aA A— bA, A —> bB, B — c}, where the terminals a. b, and ¢
correspond to the primitives shown in Fig. 12.26(b). As indicated earlier, S is the
starting symbol from which the strings of L(G) are generated. For instance, ap-
plying the first production followed by two applications of the second produc-
tion yields S = aA = abA = abbA,where (=) indicates a string derivation
starting from § and using productions from the set P. The first production al-
lowed rewriting S as A, and the second production allowed rewriting A as bA.
With a nonterminal in the string abbA, we can continue the derivation. For ex-
ample, applying the second production two more times, followed by one appli-
cation of the third production and one application of the fourth production,
yields the string abbbbbc, which corresponds to the structure shown in
Fig. 12.26(c). No nonterminals remain after application of the fourth production,
so the derivation terminates when this production is used. The language gen-
erated by the rules of this grammar is L(G) = {ab"c|n = 1}, where b” indicates
n repetitions of the symbol b. In other words, G is capable of generating only
skeletons of the form shown in Fig. 12.26(c) but having arbitrary length.
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EXAMPLE 12.9:
Object class
generation using a
regular string
grammar.

a

b
¢

FIGURE 12.26

(a) Object
represented by its
(pruned)
skeleton.

(b) Primitives.

(c) Structure
generated by
using a regular
string grammar.
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TABLE 12.1
Example of
semantic
information
attached to
production rules.

Production Semantic Information

S > aA Connections to ¢ are made only at the dot. The direction of a.
denoted 8, is given by the direction of the perpendicular
bisector of the line joining the end points of the two undotted
segments. The line segments are 3 cm each.

A — bA Connections to b are made only at the dots. No multiple
connections are allowed. The direction of b must be the same
as the direction of a. The length of b is 0.25 cm. This production
cannot be applied more than 10 times.

A — bB The direction of a and & must be the same. Connections must be
simple and made only at the dots.
B—c¢ The direction of ¢ and ¢ must be the same. Connections must be

simple and made only at the dots.

Use of semantics

In the preceding example we assumed that the interconnection between primi-
tives takes place only at the dots shown in Fig. 12.26(b). In more complicated sit-
uations the rules of connectivity, as well as information regarding other factors
(such as primitive length and direction) and the number of times a production can
be applied, must be made explicit. This can be accomplished by using semantic
rules stored in the knowledge base of Fig. 1.23. Basically, the syntax inherent in the
production rules establishes the structure of an object, whereas semantics deal
with its correctness. For example, in a programming language like C, the statement
A = D/F is syntactically correct, but it is semantically correct only if £ # 0.

Suppose that we attach semantic information to the grammar discussed in the
preceding example. The information can be attached to the production rules in
the form shown in Table 12.1. By using semantic information, we are able to use a
few rules of syntax to describe a broad (but limited as desired) class of patterns.
For instance, by specifying the direction of 4 in Table 12.1, we avoid having to spec-
ify primitives for each possible orientation. Similarly, by requiring that all primi-
tives be oriented in the same direction, we eliminate from consideration nonsensical
structures that deviate from the basic shapes typified by Fig. 12.26(a).

Automata as string recognizers

So far we have demonstrated that grammars are generators of patterns. In the
following discussion we consider the problem of recognizing whether a pattern
belongs to the language L(G) generated by a grammar G. The basic concepts un-
derlying syntactic recognition may be illustrated by the development of mathe-
matical models of computing machines, called automata. Given an input pattern
string, an automaton is capable of recognizing whether the pattern belongs to the
language with which the automaton is associated. Here, we focus only on finire ait-
tormata, which are the recognizers of languages generated by regular grammars.
A finite automaton is defined as the 5-tuple

AI = (Q‘ 2, 8. q,. F) (12.3‘7)
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where Q is a finite, nonempty set of stares, X is a finite input alphabet, 8 1s a
mapping from @ X X (the set of ordered pairs formed from elements of ¢ and
¥} into the collection of alt subsets of Q, g, is the starting state, and £ (a subset
of Q) is a set of final, or accepting, states.

Consider an automaton given by Eq. (12.3-7), with Q = {q[,. q, qg}.
S = {a. b}, F = {qu}, and mappings 8(q,. a) = {q2}. (g0, b) = {aq1}.
8(q1. a) = {q:}.8(q1. ) = {qu}. (42, a) = {qu}, and 8(q2. b) = {g}. If. for
example, the automaton is in state g, and an a is input, its state changes to ¢-.
Similarly. if a b is input next, the automaton changes to state g,, and so on. The
initial and final states are the same in this case. i

Figure 12.27 shows a state diagram for the automaton just discussed. The
state diagram consists of a node for each state and directed arcs showing the pos-
sible transitions between states. The final state is shown as a double circle, and
each arc is labeled with the symbol that causes the transition between the states
joined by that arc. In this case the initial and final states are the same. A string
w of terminal symbols is said to be accepted or recognized by an automaton if,
starting in state g, the sequence of symbols (encountered as w is scanned from
left to right) causes the automaton to be in a final state after the last symbol from
w has been scanned. For example, the automaton in Fig. 12.27 recognizes the
string w = abbabb but rejects the string w = aabab.

There is a one-to-one correspondence between regular grammars and finite
automata. That is, a language is recognized by a finite automaton if and only if it
is generated by a regular grammar. The design of a syntactic string recognizer
based on the concepts discussed so far is a straightforward procedure, consisting
of obtaining a finite automaton from a given regular grammar. Let the grammar
be denoted G = (N, X, P. X,)), where X,, = S, and suppose that N is composed of
X, plus 1 additional nonterminals X, X,..., X,,. The set O for the automaton is
formed by introducing n + 2 states {gy. 1, -+, qu» gn+1} Such that g, corresponds

EXAMPLE 12.10:
A simple
automaton.

FIGURE 12.27 A
finite automaton.
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EXAMPLE 12.11:
Finite automaton
for recognizing

the patterns in
Fig. 12.26.

to X;for 0 =< i/ < n,and g, is the final state. The set of input symbols is identical
to the set of terminals in G. The mappings in 8 are obtained by using two rules
based on the productions of G;namely, for each i and with0=i=n0=j=<y,

L If X, — aX,isin P, then §(q,, a) contains g;.
2. If X, — aisin P, then 8(q;,a) contains g,,. ,.

Conversely, given a finite automaton, A ;= (0, 2,8, g, F), we obtain the
corresponding regular grammar, G = (N, 3, P, Xo) by letting N consist of the
elements of Q, with the starting symbol X, corresponding {o g, and the pro-
ductions of G obtained as follows:

1. If g,isin 8(g,,a), there is a production X, — aX;in P.
2. Ifastatein Fisin 8(61,-, a) there is a production X; — ain P,

The terminal set, ¥, is the same in both cases.

@ The finite automaton for the grammar given in connection with Fig, 12.26 is
obtained by writing the productions as Xp — aX), X, - bX|, X, — bX,,and
Xy = c.'Then A; = (Q, Z, 8, g, F), with Q = {g,, 41, ¢», a5, 2 = {a, b, ¢},
F = {gs} and mappings 5(¢o, a) = {9,}.5(¢1, ) = {q1, 9.}, 8(g2. ¢) = {qs}.
For completeness, we write 8(go, b) = 8(qo,¢) = 8(¢;.a) = 8(g;,c) = 8(g.a) =
8(q,,b) = &, where Jis the null set, indicating that these transitions are not defined
for this automaton.

12.3.4 Syntactic Recognition of Trees

Following a format similar to the preceding discussion for strings, we now ex-
pand the discussion to include tree descriptions of patterns. We assume that the
image regions or objects of interest have been expressed in the form of trees by
using the appropriate primitive elements, as discussed in Section 11.5.

Tree grammars

A tree grammar is defined as the S-tuple
G=(NZPrS) (12.3-8)

where, as before, N and X are sets of nonterminals and terminals, respectively:
S, contained in N, is the start symbol, which in general can be a tree; P is a set
of productions of the form 7; — T,, where T, and T; are trees; and r is a ranking
function that denotes the number of direct descendants (offspring) of a node
whose label is a terminal in the grammar. Of particular relevance to our
discussion are expansive tree grammars having productions of the form

X =k
/TN
X1X;... X,

where X, X3,..., X, are nonterminals and k is a terminal.
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i The skeleton of the structure shown in Fig. 12.28(a) can be generated by
using a tree grammar with N = {Xl,Xz,X3, S} and 2 = {a, b, ¢, d, e}, where
the terminals represent the primitives shown in Fig. 12.28(b). Assuming head-
to-tail connectivity of the line primitives, and arbitrary connections to the cir-
cle along its circumference, the grammar under consideration has productions
of the form

(1)S—>q (2) X;—b (3) Xy c\
X, X, Xz/ >(3
(4) Xz—“”f (5) Xy—e (6) Xs—*‘lf (7) X3—>a
X, X

The ranking functions in this case are r(a) = {0. 1}, r(b) = r(d) = {1},
r(e) = {0,1},and r(c) = {2}. Restricting application of productions 2, 4, and
6 10 the same number of times would generate a structure in which all three
legs have the same length. Similarly, requiring application of productions 4 and
6 the same number of times would produce a structure that is symmetrical about
its vertical axis. This type of semantic information is similar to the earlier dis-
cussion in connection with Table 12.1 and the knowledge base of Fig. 1.23.

Tree automata

Whereas a conventional finite automaton scans an input string symbol by sym-
bol from left to right, a tree automaton must begin simultaneously at each node
on the frontier (the leaves taken in order from left to right) of an input tree

a
b

FIGURE 12.28

(a) An object and
(b) primitives
used for
representing the
skeleton by
means of a tree
grammar.

EXAMPLE 12.12:
A simple tree
grammar.
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and proceed along parailel paths toward the root. Specifically, a frontier-to-root
automaton is defined as

A = (Q. F. {filke Z}) (12.39)
where

Q is a finite set of states,
F,asubset of Q, is a set of final states, and
f is a relation in Q™ X Q such that m is a rank of k.

The notation Q" indicates the Cartesian product of € with itself 7 times:
0" =0 X Q@ XQ X...X Q. From the definition of the Cartesian product,
we know that this expression means the set of all ordered m-tuples with el-
ements from Q. For example, if m = 3,than °’ = Q@ X @ X @ = {x, y,
zilxeQ, ve @, ze Q}. Recall that a relation R fromaset A toaset Bisa
subset of the Cartesian product of A-and B;thatis, R C A X B.Thus arela-
tion in Q™ X Q is simply a subset of the set Q™ X Q.

For an expansive tree grammar, G = (N, X, P, r, §), we construct the cor-
responding tree automaton by letting Q = N,with F = {S} and, for each sym-
bol @ in 3, defining a relation f, such that (X;, Xs,..., X,,, X ) is in f; if and only
if there is in G a production

X >k
i
VA
X, X,... X,

For example, consider the tree grammar G = (N, 3, P, r,S),with N = {§, X},
Y = {a, b, ¢, d}, productions

S—>/d X—-rc X—a X—b
X X

and rankings r(a) = {0}, r(b) = {0},
responding tree automaton, 4, = (Q,
0 = {S.X}.F = {S},and {f, [k e 3}
defined as

X

r(c¢) = {1}, and r(d) = {2}.The cor-
F, { ke E}) is specified by letling
= {f vs Joo Jeo fd} where the relations are

fo = {(0, X)}, arising from production X — a
f» = {(, X)}, arising from production X — b

7. = {(X, X)}, arising from production X — ¢

|
X
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and

fo = {(X, X, 5)}.arising from production § — d
/\
X X

The interpretation of relation f, is that a node labeled a with no offspring (hence
the null symbol &J} 1s assigned state X. The interpretation of f, is that a node la-
beled ¢, with one offspring having state X, is assigned state X. The interpreta-
tion of relation f, is that a node labeled d with two offspring, each having state
X, is assigned state S.

In order to see how this tree automaton goes about recognizing a tree gener-
ated by the grammar discussed earlier, consider the tree shown in Fig. 12.29(a).
Automaton A, first assigns states to the frontier nodes @ and b via relations f, and
f»» respectively. In this case, according to these two relations, state X is assigned
to both leaves, as Fig. 12.29(b) shows. The automaton now moves up one level
from the frontier and makes a state assignment to node ¢ on the basis of f. and
the state of this node’s offspring. The state assignment based on f, again is X, as
indicated in Fig. 12.29(c). Moving up one more level, the automaton encounters
node d and, as its two offspring have been assigned states, relation f;, which calls
for assigning state § to node d., is used. Because this is the last node and the state
S isin F, the automaton accepts (recognizes) the tree as being a valid member of
the language of the tree grammar given earlier. Figure 12.29(d) shows the final
representation of the state sequences followed along the frontier-to-root paths.

/d\ d‘
/ \\ / \
a ¢ [X] a c
\ \
b (X] b
J,d\ [S]/ d\
\
(X1d [x]e X]d [X]c

743

ab
cd

FIGURE 12.29
Processing stages
of a frontier-to-
root tree
automaton:

{a) Input tree.
(b) State
assignment to
frontier nodes.
(c} State
assignment to
intermediate
nodes. (d) State
assignment to
root node.
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EXAMPLE 12.13:

Use of tree
grammatrs for
recognizing
events in bubble
chamber images.

FIGURE 12.30 A
bubble chamber
photograph. (Fu
and Bhargava.)

Chapter 12 =

Object Recognition

7 Images of bubble chamber events are taken routinely during experiments in
high-energy physics in which a beam of particles of known properties is direct-
ed onto a target of known nuclei. A typical event consists of tracks of secondary
particles emanating from the point of collision. such as the example shown in
Fig. 12.30. The incoming tracks are the horizontal paralle] lines. Note the natural
tree structure of the event near the middle of the photograph.

A typical experiment produces hundreds of thousands of photographs, many
of which do not contain events of interest. Examining and categorizing these
photographs is tedious and time-consuming for a human interpreter, thus
creating a need for automatic event recognition techniques.

A tree grammar G = (N, Z, P, r, §) can be specified that generates trees
representing events typical of those found in a hydrogen bubble chamber as a
result of incoming positively charged particle streams. In this case, N = {S X,
X,}.2 = {a, b}.and the primitives @ and b are interpreted as follows:

a: ~ convex arc
b: «» concave arc.

The productions in P are

S —a S—a S— a
j /\ AN
i I PV RN
‘ /: \\ / /f \ \\
) X, X, X X; X, X,
S — a Xi—a Xi—a X;—b Xy —b
AR !
X Xy X Xy X5 A, X X

The rankings are r(a) = {0,1,2,4,6} and r(b) = {0, 1}.The branching pro-
ductions represent the number of tracks emanating from a collision, which occur
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in pairs and usually do not exceed six. Figure 12.31(a) shows the collision event
in Fig. 12.30 segmented into convex and concave sections, and Fig. 12.31(b)
shows the corresponding tree representation, This tree, as well as variations of
it, can be generated by the grammar given above.

The tree automaton needed to recognize the types of trees just discussed is
defined by using the procedure outlined in the preceding discussion. Thus,

A, = (O, F, {f;|k e T}) is specified by letting @ = {S, X;, X,}, F = {§},and

{filk e =} = {f,.f,} . The relations are defined as f, = {(S, S),(X,,X,,$), (X1,
X, X3, X, 8), (X1, X1, X1, X2, X5, X5, ), (X3, X, ), (@, X,)} and f, = {(X3,
X,),(9D, X,)}. We leave it as an exercise to show that this automaton accepts the
tree in Fig. 12.31(b).

Learning

The syntactic recognition approaches introduced in the preceding discussion re-
quire specification of the appropriate automata (recognizers) for each class under
consideration. In simple situations, inspection may yield the necessary automa-
ta. In more complicated cases, an algorithm for learning the automata from sam-
ple patterns (such as strings or trees) may be required. Because of the one-to-one
correspondence between automata and grammars described previously, the
learning problem sometimes is posed in terms of learning grammars directly
from sample patterns, a process that usually is called grammatical inference. Our

ab

FIGURE 12.31

(a) Coded event
from Fig. 12.30.

(b) Corresponding
tree representation.
(Fu and Bhargava.)



746  Chapter 12 © Object Recognition

EXAMPLE 12.14:
Inferring a finite
automaton from
sample patterns.

focus is on learning finite automata directly from sample pattern strings. The ref-
erences at the end of this chapter provide a guide to methods for learning tree
grammars and automata, as well as other syntactic recognition approaches.

Suppose that all patterns of a class are generated by an unknown grammar
G and that a finite set of samples R* with the property

R* C {v|vin L(G)} (12.3-10)

is available. The set R*, called a positive sample set, is simply a set of training pat-
terns from the class associated with grammar G. This sample set is said to be
structurally complete if each production in G is used to generate at least one
element of R™. We want to learn (synthesize) a finite automaton A, that will
accept the strings of R™ and possibly some strings that resemble those of R*.

Based on the definition of a finite automaton and the correspondence be-
tween G and A/, it follows that R* C 2*, where Z* is the set of all strings com-
posed of elements from =. Let z in 2* be a string such that zw is in R” for some
w in Z*. For a positive integer k, we define the & rail of z with respect to R as
the set Az, R", k), where

h(z. R*, k) = {w|zwin R*,|w| = k}. (12.3-11)

In other words, the & tail of z is the set of strings w with the properties (1) zw
isin R™, and (2) the length of w is less than or equal to k.

A procedure for learning an automaton A/ R*, k) = (Q, £, 8, g, F) froma
sample set R™ and a particular value of k consists of letting

Q = {glg = h{z, R*, k) for z in £*} (12.3-12)
and, foreachain I,
8(g.a) = {q’'inQ{q’ = h(za, R, k), withq = h{z, R, k)}.  (12.3-13)
In addition, we let
go = h{A, R* k) (12.3-14)
and
F={glginQ,ring} (12.3-15)

where A is the empty string (the string with no symbols). We note that the
automaton A (R*, k) has as states subsets of the set of all k tails that can be
constructed from R*,

%% Suppose that R* = {a,ab,abb} and k = 1.Then from the preceding discussion.

z=A h(A, R*.1) = {w]dwin R, |w| = 1}
= {d}
= G

z = a, Na, R, 1) = {wlawin R, lw! = 1}

#

{A. b}

g

f
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z=ab,  hlab,R',1) = {A b}

abb, h(abb, R*,1) = {A)}

<
= (.

In this case, other strings z in Z* yield strings z10 that do not belong to R, giv-
ing rise to a fourth state, denoted g, which corresponds to the condition that A is
the null set. The states, therefore, are g, = {a},q, = {A, a}, g, = {A}, and g,
which give the set @ = {qy. 4), g2, g }. Although the states are obtained as sets of
symbols (k tails), only the state labels g, g,....are used in forming the set Q. The
next step is to obtain the transition functions. Since ¢, = h()t, R, 1), it follows that

8(qe, a) = h(Aa, R*.1) = h{a, R*,1) = q,
and
8(go, b) = h(Ab, R, 1) = (b, R*,1) = ¢p.
Similarly, ¢, = h(a, R*,1) = h(ab, R*, 1) and it follows that
8(q,,a) = h{aa, R*,1) = h{aba, R*,1) = qp.
Also, 68(11,? S h(ab. R*, 1) = q, and 8(qu, b) D h{abb, R*, 1) = g, that is,

8(q;. b) = {q., g.}. Following the procedure just described gives
8(qa.a) = (g2, b) = 8(qg.a) = 8(gz.b) = qy.The set of final states contains
those states that have the empty string A in their k-tail representation. In this
case.q; = {A,b} and g, = {A}.s0 F = {q,, q,}.

Based on these results, the inferred automaton is given by

Af(R+’ 1) = (Q- 2,8, qq, F)

where O = {qy. 4\, ¢2. 9z}, £ = {a. b}, F = {q,, q,}, and the transition func-
tions are as given above. Figure 12.32 shows the state diagram. The automaton
accepts strings of the form a, ab,abb,. .. ab". which are consistent with the given
sample set.

FIGURE 12.32
State diagram for
the finite
automaton
inferred from the
sample set

R™ = {a,ab.
abb}.
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FIGURE 12.33
Relationship
between
L[A{R", k)] and
k.The value of &,
is such that

kn = {length of
the longest string
in R™).

The preceding example shows that the value of k controls the nature of the
resulting automaton. The following properties exemplify the dependence of
A¢(R*, k) on this parameter.

Property 1. R* C L[A/(R*, k)] forall k = 0, where L{A/{R", k)] is the lan-
guage accepted by 4 (R*, k).

Property2. L[A;(R", k)] = R*if k is equal to, or greater than, the length
of the longest string in R*; L{A(R*, k)] = Z*if k = 0.

Property3. L[A/R*.k + 1) C LIA/R", k)]

Property 1 guarantees that A f( R*, k} will, as a minimum, accept the strings in
the sample set R". If k is equal to, or greater than, the length of the longest
string in R", then by Property 2 the automation will accept only the strings in
R*.Ifk = 0,A,(R*,0) will consist of one state g, = {A}, which will act as both
the initial and final states. The transition functions will then be of the form
8(qo,a) = qofor ain . Therefore, L[A,(R*,0)] = £*, and the automaton will
accept the empty string A and all strings composed of symbols from . Finally,
Property 3 indicates that the scope of the language accepted by A (R, k) de-
creases as k increases.

These three properties allow control of the nature of Af(R*, k) simply by
varying the parameter k. If L[A/(R", k)] is a guess of the language L, from
which the sample R was chosen and if k is very small, this guess of L, will con-
stitute a liberal inference that may include most or all of the strings in £*, How-
ever, if k is equal to the length of the longest string in R*, the inference will be
conservative in the sense that A,(R*, k) will accept only the strings contained
in R*. Figure 12.33 shows these concepts graphically.

L{As(R".0)]

L[Af(R*,1)]
L[AK(R",2)]
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Consider the set R* = {caaab, bbaab, caab, bbab, cab, bbb, cb}. Fork = 1,
following the same procedure used in the preceding example gives

1. z=A, h(A.R' 1) = {d} = qp;
2. z=oc¢ hz, R',1) = {b} = q,;

3. 7= ca, Mz, R, 1) = {b} = q,;

4. 7= cbh, Mz R', 1) = {A} = qu;

5. 7= caa, hz, R', 1) = {b} = q;

6. 2z = cab, h{z, R, 1) = {A} = qq;

7. z = caaa, h(z, R*,1) = {b} = q;

8. z = caab, Mz, R", 1) = {A} = q;

9. z=caaab., h{z, R, 1) = {A} = qu;
10. =z =b, h(z, R*,1) = {&} = qg;
11. 7 = bb, h(z, R, 1) = {b} = gy;

12.  z = bba, h(z, R, 1} = {b} = g;;
13. 2 = bbb, Wz, R",1) = {A} = qo;

14. 7 = bbaa, Az, R,1) = {b} = qy;
15. z = bbab, hlz, R*, 1) = {A} = qq;
16.  z = bbaab, hi{z, R",1) = {A} = q,.

The automaton is
Af(R+, 1) = (Q, E,B,qO,F)

with @ = {g, q1, Gz}, = = {a, b, ¢}, F = {qo}, and the transitions shown in
the state diagram in Fig. 12.34. To be accepted by the automaton, a string must
begin with a, b, or ¢ and end with a symbol b. Also, strings with repetitions of a,
b, or ¢ are accepted by A(R*, 1).

The principal advantage of the preceding method is simplicity of imple-
mentation. The synthesis procedure can be simulated in a digital computer with
a modest amount of effort. The main disadvantage is deciding on a proper value
for k, although this problem is simplified to some degree by the three proper-
ties discussed earlier.

FIGURE 12.34 State diagram for the automaton A,(R", 1) inferred from the sample
set R* = {caaab, bbaab, caab, bbab, cab,bbb,ch}.

EXAMPLE 12.15:
Another example
of inferring an
automaton from a
given set of
patterns.
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